
NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION

Bottom-up Software Reuse:
Documentation

James Marshall
Innovim / NASA GSFC

5th ESDS WG Meeting

Nov. 14, 2006

NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION
ESDS Reuse Working Group

About Documentation

• Documentation provides readers with the additional
information they need about the software or system.

• Different types of documentation:
– User documentation for end users to use the software/system
– Process documentation for managers to use in planning,

budgeting, and scheduling software processes
– System documentation on structure, components, and

interactions for developers

• Examples of documentation standards:
– NASA-STD-2100-91, NASA Software Documentation Standard
– IEEE Std 1063-2001, Standard for User Documentation
– ISO/IEC 18019:2004, Guidelines for the Design and Preparation

of User Documentation for Application Software

• In addition, reusable software components should have
a corresponding reuse manual.

NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION
ESDS Reuse Working Group

Motivation for a Reuse Manual

• A reuse manual provides information that enables the
evaluation, understanding, use, and adaptation of a
software component.

• Answers questions such as:
– What kind of component is it?
– What is the component’s functionality?
– Can the component be reused in our context? How?
– What else is needed to reuse the component?
– Can the component be customized/adapted/modified? How?

To what extent?
– Can the component be interconnected with our components?
– Is the component’s quality sufficient for our purposes?

• General structure of information may be: general, reuse,
administrative, evaluation, other.

NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION
ESDS Reuse Working Group

Reuse Manual, Suggested Form

• General information
– Introduction
– Classification
– Functionality
– Platforms
– Reuse status

• Reuse information
– Installation
– Interface descriptions
– Integration and reuse
– Adaptation

• Administrative information
– Procurement and support
– Commercial and legal

restrictions
– History and versions

• Evaluation information
– Specification
– Quality
– Performance and resource

requirements
– Alternative components
– Known bugs/problems
– Limitations and restrictions
– Possible enhancements
– Test support
– Interdependencies

• Other information
– System documentation
– References
– Reading aids

NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION
ESDS Reuse Working Group

Self-documenting Code

• Source code can serve as internal documentation.
• Good programming style is the key.

– Good program and logical structure
– Straightforward, easy to understand approaches
– Good choice of names for variables, routines, classes, etc.
– Use of named constants instead of literals
– Clear layout with good formatting
– Minimized control flow and data structure complexity

• Benefits include simplicity, clarity, completeness,
consistency, and robustness.

• Self-documenting code does not rely on comments, but
they can be helpful.

NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION
ESDS Reuse Working Group

Some Examples

Bad Style = Poor Documentation

for (i = 2; i <= num; i++) {
meetsCriteria[i] = true;
}
for (i = 2; i <= num / 2; i++) {
j = i + i; while (j <= num) {
meetsCriteria[j] = false;
j = j + i;
}
}
for (i = 1; i <= num; i++) {
if (meetsCriteria[i]) {
System.out.println (i + " meets

criteria.");
}
}

Good Style = Good Documentation

for (primeCandidate = 2; primeCandidate <=
num; primeCandidate++) {
isPrime[primeCandidate] = true;

}

for (int factor = 2; factor < (num / 2);
factor++) {
int factorableNumber = factor + factor;
while (factorableNumber <= num) {

isPrime[factorableNumber] = false;
factorableNumber = factorableNumber +

factor;
}

}

for (primeCandidate = 1; primeCandidate <=
num; primeCandidate++) {
if (isPrime[primeCandidate]) {

System.out.println(primeCandidate + "
is prime.");

}
}

Both Java code fragments do
the same thing, but one uses

descriptive variable names and
a clear layout, making it more

readable and self-documenting. Note that there are no comments in either code
fragment, but this one is still more readable.

NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION
ESDS Reuse Working Group

Commenting Source Code

• Comments can have a negative effect
if they:

– Repeat the code

– Provide unnecessary explanations
• Try to improve complex/tricky code

rather than commenting it

– Were entered as temporary markers
• Fix problems and remove markers

• Comments are beneficial when they:
– Summarize the code

– Describe the code’s intent
• e.g., “get current employee info” rather

than “update employeeRecord object”

– Provide information the code can’t
express itself

• Copyrights, confidentiality notices,
version numbers, etc.

// Increments the counter i
i = i + 1;
employees[i].processPayments();

// Scan through all employees
in database

i = i + 1;
employees[i].processPayments();

Tools such as Javadoc can also use
comments to generate documentation.

NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION
ESDS Reuse Working Group

References

• Software Engineering with Reusable Components by
Johannes Sametinger
– Types of documentation and reuse manual information

• Code Complete, Second Edition by Steve McConnell
– Self-documenting code information and examples

• General Coding Best Practices course on
https://nasa.skillport.com/
– Commenting source code, benefits of self-documenting code

